

https://policyjournalofms.com

On Weakly Conjugate ζ -Permutable Subgroups of Finite Groups

Abid Mahboob^{1,*}, Muhammad Waheed Rasheed¹, Jahangeer Karamat¹, Warda Noman¹, Noor Ahmad¹, Muhammad Faisal¹

¹ Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan Corresponding Author: *abid.mahboob@ue.edu.pk

Abstract

Let C $\neq \phi$ be subset of \mathcal{G} and ζ represents complete set of Sylow subgroups of \mathcal{G} . Let $H_{\mathcal{G}} \leq \mathcal{G}$ is C- ζ permutable (conjugate ζ permutable) subgroup within \mathcal{G} if for $H_{\mathcal{X}}\mathcal{G}_q = \mathcal{G}_q H_{\mathcal{X}} \exists x \in \mathbb{C}, \forall \mathcal{G}_q \in \zeta$ be a finite group. A subgroup $H_{\mathcal{G}}\mathcal{G}$ is known as weakly Conjugate ζ -permutable within \mathcal{G} when $\exists, \mathcal{K} \leq \mathcal{G}$ s.t $\mathcal{G} = H_{\mathcal{K}}\mathcal{K}$ and $H_{\mathcal{G}}\mathcal{K} \leq H_{c\zeta}$ where $\langle H_{c\zeta} \rangle \subseteq H_{\mathcal{G}}$ are conjugate ζ permutable within \mathcal{G} . Our main goal: \mathcal{G} is supersolvable when maximal subgroups of $\mathcal{G}_q \cap F^*(\mathcal{G})$ are weakly C- ζ -permutable within \mathcal{G} , for each $\mathcal{G}_q \in \zeta$, where $F^*(\mathcal{G})$ denote generalized Fitting subgroup of \mathcal{G} . Moreover, we show when, $\mathcal{G} \in F$, F is saturated formation consist of every supersolvable groups if and only if $H_{\mathcal{G}} \subseteq G$ s.t $\mathcal{G}/H_{\mathcal{G}} \in F$ and maximal subgroups of $\mathcal{G}_q \cap F^*(H_{\mathcal{G}})$ becomes weakly C- ζ -permutable Within \mathcal{G} , for each $\mathcal{G}_q \in \zeta$.

Keywords: Weakly C- ζ -permutable, supersolvable groups, maximal subgroups, finite groups

Introduction

All groups assumed to be finite. Majority of notation is level and locate in Ballester Bolinches et al. [2], Doerk and Hawkes [3]. Moreover, \mathcal{G} represents set of different primes dividing $|\mathcal{G}|$ and \mathcal{G}_q denotes Sylow q-subgroup of group G for few prime $q \in \pi(G)$. Remember: a subgroup $H_1 \leq G$ is known as Spermutable whenever it permutes along each Sylow subgroup of *G*. This idea was initiate by Kegel [7]. who said these subgroups S-quasi normal and different authors' works on this. Asaad, Heliel [1] enhanced S-permutability by changing permutability along ζ . When every q divides $|\mathcal{G}|$, ζ has only one \mathcal{G}_q . A subgroup $H_1 \leq G$ becomes ζ -permutable within G when H_1 permutes along each member of ζ . [12] $H_1 \leq G$ is known as C- ζ permutable (conjugate ζ permutable) when some $x \in C$ s.t $H_1^X \mathcal{G}_q = \mathcal{G}_q^X$, for each $\mathcal{G}_q \in \zeta$. By c-normal within \mathcal{G} whenever $H_2 \trianglelefteq \mathcal{G}$ subgroup $H_1 \leq \mathcal{G}$ becomes Wang [11], a s.t $H_1H_2=\mathcal{G}$ and $H_1\cap H_2\leq (H_1)_{\mathcal{G}}$, where $(H_1)_{\mathcal{G}}=core_{\mathcal{G}}(H_1)$. There exist groups with ζ -permutable which are not c-normal and vice versa hold; sight Examples 1, 2 & 3 of [4]. Furthermore, ζ-permutability & cnormality both extended by [4] as: a subgroup $H \leq G$ becomes weakly ζ -permutable within G whenever $\mathcal{G}=H_{\mathcal{K}}$ for $\mathcal{K} \triangleleft \mathcal{G}$ (subnormal) and $H_{\mathcal{H}} \land \mathcal{K} \leq H_{\mathcal{I}}$, where $\langle H_{\mathcal{I}} \rangle \subseteq H_{\mathcal{I}}$ are ζ -permutable within \mathcal{G} . By embedding characterization of this new subgroup, authors in [4] observed that when every maximal subgroups of certain or each belong to ζ for few normal subgroup are weakly ζ -permutable within G. Where they find some results and extend many present results within literature. This paper perhaps observed as enhancement of [4]; in short, coming results exist in [4]:

Definition: A subgroup $H \leq G$ be weakly Conjugate ζ -permutable whenever $\mathcal{K} \leq \mathcal{G}$ s.t $H \mathcal{K} = \mathcal{G}$ and $H \cap \mathcal{K} \leq H_{c\zeta}$, where $\langle H_{c\zeta} \rangle \subseteq H$ are conjugate ζ -permutable within \mathcal{G} .

Example: Consider $\mathcal{G}=A_4$, the alternating group of degree 4, H= $\langle (134) \rangle$, C= $\langle (142) \rangle$, $\zeta=V_4$, $\langle (123) \rangle$, where $\mathcal{K}=V_4$ is the Klein 4-group. Clearly $\mathcal{G}=H_{\mathcal{K}}$, H₀ $\cap \mathcal{K} \leq H_{c\zeta}$. Therefore H₀ becomes C- ζ -permutable and hence weakly conjugate ζ -permutable in \mathcal{G} .

Theorem 1.1. Suppose $|\mathcal{G}|$ is divisible by prime q. When maximal subgroups of $\mathcal{G}_q \in \zeta$ are weakly Conjugate ζ -permutable within \mathcal{G} , so \mathcal{G} becomes q-nilpotent.

Theorem 1.2. Suppose F carrying all types of supersolvable groups μ . So, coming statements are *identical:*

- 1. $\mathcal{G} \in \mathcal{F}$.
- 2. For a solvable $\mathcal{K} \leq \mathcal{G}$ s.t $\mathcal{G}/\mathcal{K} \in \mathcal{F}$ and maximal subgroups of $Syl(\mathcal{F}(\mathcal{H}))$, becomes weakly Conjugate ζ -permutable within \mathcal{G} .

The major purpose to proceeds the beyond results next for proving:

Theorem 1.3. When maximal subgroups of $\mathcal{G}_q \cap \mathcal{F}^*(\mathcal{G})$ form weakly Conjugate ζ -permutable, $\mathcal{G}_q \in \zeta$ so \mathcal{G} becomes supersolvable.

Theorem 1.4. For $F \& \zeta$ these two statements are identical:

- $1. \quad \mathcal{G} \in \mathcal{F}.$
- 2. For $\mathcal{K} \leq \mathcal{G}$ s.t $\mathcal{G}/\mathcal{K} \in \mathcal{F}$ and maximal subgroups of $\mathcal{G}_q \cap \mathcal{F}^*(\mathcal{K})$ form weakly Conjugate ζ -permutable within \mathcal{G} , $\forall \mathcal{G}_q \in \zeta$.

Theorems 1.3, 1.4 modified and enhanced few familiar results of literature (look at Corollaries 3.1, 3.2, 3.3, 3.4 & 3.5). Remember, $F^*(G)$ be set of each $y \in G$ which generate an inner automorphism on each chief factor of G. $F^*(G)$ is an main characteristic subgroup of G and generalization of F(G) (Fitting subgroup). From [5, X 13], $F^*(G) \neq 1$ if $G \neq 1$. For the characterization of $F^*(G)$ and saturated formation see [5, X 13]& [3].

2. Some important lemmas

Lemma 2.1. Suppose a soluble $H_{\Sigma} \cong F^*(\mathcal{G})$. When maximal subgroups of $\mathcal{G}_q \cap F^*(\mathcal{G})$ are conjugate ζ -permutable in $\mathcal{G}, \forall \mathcal{G}_q \in \zeta$ so \mathcal{G} becomes supersolvable.

Proof. Follow [12, Corollary 3.11].

Lemma 2.2. Consider a group *G*. Next:

1. When $\mathcal{K} \trianglelefteq \mathcal{G}$ indicate $\mathcal{F}^*(\mathcal{K}) \le \mathcal{F}^*(\mathcal{G})$.

- **2.** $F^*(F^*(\mathcal{G}))=F^*(\mathcal{G})\geq F(\mathcal{G})$; when $F^*(\mathcal{G})$ be soluble, $F^*(\mathcal{G})=F(\mathcal{G})$.
- **3.** Assume $\mathcal{T} \subseteq \mathcal{G} \subseteq \mathbb{Z}(\mathcal{G})$, subsequently $\mathcal{F}^*(\mathcal{G}/\mathcal{T}) = \mathcal{F}^*(\mathcal{G})/\mathcal{T}$.
- **4.** Let $\mathcal{K} \subseteq \mathcal{G} \subseteq \Phi(\mathcal{G})$, laterally $F^*(\mathcal{G}/\mathcal{K}) = F^*(\mathcal{G})/\mathcal{K}$.

Proof. See [12, Lemma 2.7].

Lemma 2.3. Suppose $H_1, H_2 \leq \mathcal{G}$ s.t $H_1 \leq \mathcal{G}$. Then

1. When $H_1 \leq H_2 \& H_1$ be weakly Conjugate ζ -permutable within \mathcal{G} , then H_1 is weakly conjugate

_

_

 $\zeta \cap H_2$ -permutable within H_2 .

- 2. When $H_2 \le H_1$, next H_1 is weakly Conjugate ζ -permutable $\mathcal{G} \Leftrightarrow H_1/H_2$ is weakly conjugate $\zeta H_2/H_2$ -permutable within \mathcal{G}/H_2 .
- **3.** When $(|H_1|, |H_2|)=1$ and H_1 is weakly Conjugate ζ -permutable within G, laterally H_1H_2/H_2 is weakly conjugate $\zeta H_2/H_2$ permutable within G/H_2 .
- **4.** When H_1 is a q-subgroup of G for few prime q s.t H_1 is weakly Conjugate ζ -permutable within G however H_1 not ζ -permutable within G, then one can find $H_2 \leq G$ with $|G: H_2| = q \& G = H_1H_2$.

Proof. By use similar arguments as in [4, Lemma 2.3].

Lemma 2.4. For ζ and F carrying μ . The coming statements are identical:

- **1.** $\mathcal{G} \in \mathcal{F}$.
- **2.** Whenever a solvable $H_1 \leq G$ s.t $G/H_1 \in F$ and the maximal Syl($F(H_1)$) are weakly Conjugate ζ -permutable within G.

Proof. Same as in [4, Theorem1.6].

Lemma 2.5. Suppose $\mathcal{K} \trianglelefteq \mathcal{G}$ and \mathcal{Q} be q-subgroup of \mathcal{G} for few prime q. So.

- 1. When \mathcal{T}/\mathcal{K} is a maximal subgroup of $Q\mathcal{K}/$, then $\mathcal{T}=(\mathcal{T}\cap Q)\mathcal{K}$, Where $\mathcal{T}\cap Q \leq Q$ (maximal).
- 2. When $(|Q|, |\mathcal{K}|)=1$ and maximal subgroups of Q becomes weakly conjugate ζ permutable within G, next maximal subgroups of $Q\mathcal{K}/\mathcal{K}$ are weakly conjugate $\zeta \mathcal{K}/\mathcal{K}$ -permutable within G/\mathcal{K} .

Proof. Look at [4, Lemma 2.4].

Lemma 2.6. Consider $\mathcal{K} \leq \mathcal{G}$ and nilpotent subgroup of \mathcal{G} and \mathcal{J} be normal q-subgroup of \mathcal{G} , for few prime q, with $\mathcal{J} \leq \mathcal{K}$. When maximal of $Syl(\mathcal{K})$ are weakly Conjugate ζ -permutable within \mathcal{G} , so maximal of $Syl(\mathcal{K}/\mathcal{J})$ are weakly conjugate $\zeta \mathcal{J}/\mathcal{J}$ -permutable within \mathcal{G}/\mathcal{J} . Moreover, when maximal subgroups of $\zeta \cap \mathcal{J}$ are weakly Conjugate ζ -permutable within \mathcal{G} , then maximal subgroups of $(\zeta \mathcal{J}/\mathcal{J}) \cap (\mathcal{K}/\mathcal{J})$ are weakly conjugate $\zeta Q/\mathcal{J}$ - permutable within \mathcal{G}/\mathcal{J} .

Proof. Assume \mathcal{W} be Sylow p-subgroup of \mathcal{K} . Science \mathcal{W} is characteristic in $\mathcal{K}, \mathcal{K} \leq \mathcal{G}$ so, $\mathcal{W} \leq \mathcal{G}$. Suppose $q \neq p$. Since $(|\mathcal{W}|, |\mathcal{J}|) = 1$, maximal subgroups of \mathcal{W} are weakly Conjugate ζ -permutable within \mathcal{G}/\mathcal{J} (from Lemma 2.5(b)). So, we consider that q=p and so $\mathcal{J} \leq \mathcal{W}$. Let $M/\mathcal{J} \leq \mathcal{W}/\mathcal{Q}$ (maximal). $M \leq \mathcal{W}$ (maximal) from Lemma 2.5(a). So, M/\mathcal{J} is weakly conjugate $\zeta \mathcal{J}/\mathcal{J}$ -permutable within \mathcal{G}/\mathcal{J} by supposition and from Lemma 2.3(b). Thus, maximal subgroups of \mathcal{W}/\mathcal{J} are weakly conjugate $\zeta \mathcal{J}/\mathcal{J}$ -permutable within \mathcal{G}/\mathcal{J} . $\neg permutable$ within \mathcal{G}/\mathcal{J} . Thus, maximal subgroups of $Syl(\mathcal{K}/\mathcal{J})$ form weakly conjugate $\zeta \mathcal{J}/\mathcal{J}$ -permutable within \mathcal{G}/\mathcal{J} is a complete set of $Syl(\mathcal{G}/\mathcal{J}), \mathcal{K}/\mathcal{J} \leq \mathcal{G}/\mathcal{J}$ and nilpotent this implies $(\zeta \mathcal{J}/\mathcal{J}) \cap (\mathcal{K}/\mathcal{J})$ be set of $Syl(\mathcal{K}/\mathcal{J})$. Consequently, maximal subgroups of $(\zeta \mathcal{J}/\mathcal{J}) \cap (\mathcal{K}/\mathcal{J})$ are weakly conjugate $\zeta \mathcal{J}/\mathcal{J}$ -permutable within \mathcal{G}/\mathcal{J} .

Lemma 2.7. Suppose $\mathcal{K} \leq \mathcal{G}$. Then $\mathcal{K} \zeta$ is ζ -permutable within \mathcal{G} and $\mathcal{K}_{\mathcal{G}} \leq \mathcal{K}_{\zeta}$

Proof. Look [4, Lemma 2.2(a)].

Lemma 2.8. Suppose $H_1, H_2 \leq \mathcal{G}$ s.t $H_2 \leq \mathcal{G}$. If H_1 is ζ -permutable within \mathcal{G} implies $H_1 \cap H_2$ is ζ -permutable

_

_

within G. Proof. Follow [4, Lemma 2.1(e)].

Lemma 2.9. Suppose $\mathcal{K} \leq \mathcal{G}$ ($\mathcal{K} \neq 1$) and $\mathcal{K} \cap \emptyset(\mathcal{G}) = 1$. So $\mathcal{F}(\mathcal{K})$ of \mathcal{K} be direct product of minimal normal subgroups of \mathcal{G} that lies in $\mathcal{F}(\mathcal{K})$

Proof. Follow [9, Lemma 2.6].

3. Theorems Proof

Proof of Theorem 1.3: Consider our statement is wrong and suppose a counter example of G has minimal order. So next information's about G are correct:

(1) $F^*(\mathcal{G}) \neq \mathcal{G}$. Consider $F^*(\mathcal{G}) = \mathcal{G}$. As maximal subgroups of \mathcal{G}_q become weakly conjugate ζ -permutable within \mathcal{G} , for all $\mathcal{G}_q \in \zeta$, Lemma 2.1 implies becomes supersolvable, a negation so $F^*(\mathcal{G}) \neq \mathcal{G}$.

(2) Each $\mathcal{K} \triangleleft \mathcal{G}$ (proper), $F^*(\mathcal{G}) \subseteq \mathcal{K}$ is supersolvable. From (1), $F^*(\mathcal{G}) \neq \mathcal{G}$ we have $\mathcal{K} \triangleleft \mathcal{G}$ (proper), $F^*(\mathcal{G}) \subseteq \mathcal{K}$. As $F^*(\mathcal{G}) \trianglelefteq \mathcal{K} \trianglelefteq \mathcal{G}$, Lemma2.2(c) implies $F^*(F^*(\mathcal{G})) \le F^*(\mathcal{G})$. Lemma2.2(d) give $F^*(\mathcal{G}) = F^*(\mathcal{F}^*(\mathcal{G})) \le F^*(\mathcal{K}) \le F^*(\mathcal{G})$ so $F^*(\mathcal{G}) = F^*(\mathcal{K})$. From Lemma 2.3(a) maximal subgroups of $\mathcal{G}_q \cap F^*(\mathcal{K})$ becomes weakly conjugate $\zeta \cap \mathcal{K}$ -permutablevithin \mathcal{K} , for all $\mathcal{G}_q \cap \mathcal{K} \in \zeta \cap \mathcal{K}$. So, minimality of \mathcal{G} indicates \mathcal{K} is supersolvable. Consequently (2) hold.

(3) $F^*(\mathcal{G}) = F(\mathcal{G})$. As $F^*(\mathcal{G}) \neq \mathcal{G}$ from (1), from (2) $F^*(\mathcal{G})$ supersolvable. So, $F^*(\mathcal{G}) = F(\mathcal{G})$ from Lemma 2.2(d).

(4) \mathcal{G} does not has any prime order normal subgroup so, $Z(\mathcal{G})=1$. Suppose $\mathbb{R} \leq \mathcal{G}$ of prime order. Assume $C_3(\mathbb{R}) \leq \mathcal{G}$ (proper). Using [3, p.36, Theorem 10.6(b)] and (3), $F^*(\mathcal{G})=F(\mathcal{G})\leq C_3(\mathbb{R})$. So, $C_3(\mathbb{R})$ becomes supersolvable from (2) moreover, as $\mathcal{G}/C_3(\mathbb{R}) \cong \operatorname{Aut}(\mathbb{R})$, thus \mathcal{G} solvable. So, \mathcal{G} becomes supersolvable from Lemma 2.4, a negation. Hence we can consider $C_3(\mathbb{R})=\mathcal{G}$ thus $\mathbb{R}\leq Z(\mathcal{G})$. Using (3) and Lemma 2.2(f) $F^*(\mathcal{G}/\mathbb{R})=F^*(\mathcal{G})/\mathbb{R}=F(\mathcal{G})/\mathbb{R}$. So maximal subgroups of $\operatorname{Syl}(F^*(\mathcal{G}/\mathbb{R}))=F(\mathcal{G})/\mathbb{R}$ form weakly conjugate $\mathcal{C}(\mathbb{R}/\mathbb{R})=F^*(\mathcal{G}/\mathbb{R})$ becomes supersolvable. In this way \mathcal{G} is supersolvable science order of \mathbb{R} is prime, a negation. Consequently, (4) hold.

Suppose Q denote Sylow q-subgroup of F(G), so coming statements are true:

(5) $\Phi(Q)=1$ so, Q is abelian. Assume $\Phi(Q) \neq 1$. Surly, $\Phi(Q)$ is characteristic within Q so $Q \leq \mathcal{G}$, $\Phi(Q) \leq \mathcal{G}$. From (3) and Lemma2.2(e), $F^*(\mathcal{G}/\Phi(Q))=F^*(\mathcal{G})/\Phi(Q)=F(\mathcal{G})/\Phi(Q)$. Maximal subgroups of $Syl(F^*(\mathcal{G}/\Phi(Q))=F(\mathcal{G})/\Phi(Q))$ weakly conjugate $\zeta \Phi(Q)/\Phi(Q)$ -*permutable* within $\mathcal{G}/\Phi(Q)$. So, minimality of \mathcal{G} implies $\mathcal{G}/\Phi(Q)$ becomes supersolvable. As $\Phi(Q)\leq \Phi(\mathcal{G})$, so $\mathcal{G}/\Phi(\mathcal{G})$ is supersolvable. Moreover, class of supersolvable groups becomes F, so \mathcal{G} also supersolvable, negation. Hence, $\Phi(Q)=1$, so Q also abelian.

(6) $QO^{q}(\mathcal{G})=\mathcal{G}$. Assume $\mathcal{G}\neq QO^{q}(\mathcal{G})$. Since $F^{*}(\mathcal{G})=F(\mathcal{G})\leq QO^{q}(\mathcal{G})$ from (3), $QO^{q}(\mathcal{G})$ becomes supersolvable from (2) thus $O^{q}(\mathcal{G})$ supersolvable. So, \mathcal{G} solvable because $\mathcal{G}/O^{q}(\mathcal{G})$ is a q-group. Lemma

2.4, implies \mathcal{G} becomes supersolvable, negation. So, $QO^{q}(\mathcal{G}) = \mathcal{G}$.

(7) $T \cap O^{q}(\mathcal{G}) \trianglelefteq \mathcal{G}$ for every $T \le Q$ (maximum). Suppose $x \in \mathcal{G}$, $S = T^{x^{-1}}$. Surly $T \le Q$ (maximal) as $Q \trianglelefteq \mathcal{G}$ also |S|=|T|. From hypothesis, S becomes weakly Conjugate ζ -permutable. So, one can find $\mathcal{N} \lhd \mathcal{G}$ (subnormal) s.t $S\mathcal{N}=\mathcal{G}$ also $S\cap \mathcal{N}\leq S_1$. Since Q is abelian by (5) moreover $\mathcal{G}=Q\mathcal{N}\Rightarrow Q\cap \mathcal{N}\leq \mathcal{G}$. Clearly, $O^q(\mathcal{G}) < \mathcal{N}$ science $\mathcal{N} \triangleleft \mathcal{G}(\text{subnormal})$ also $|\mathcal{G}:\mathcal{N}|$ becomes power of q. From (6), $\mathcal{N}=QO^{q}(\mathcal{G})\cap\mathcal{N}=(Q\cap\mathcal{N})O^{q}(\mathcal{G})$ thus $\mathcal{N} \leq \mathcal{G}$. So, $S_{1}\mathcal{N} \leq \mathcal{G}$. Trivially, $S\cap S_{1}\mathcal{N}=S_{1}(V\cap\mathcal{N})=S_{1}$, so $S\cap S_{1}\mathcal{N}$ is ζ -permutable (from Lemma 2.7). Thus, $S \cap O^q(\mathcal{G}) = (S \cap S_1 \mathcal{N}) \cap O^q(\mathcal{G})$ is ζ -permutable from Lemma 2.8 $\mathrm{so}, (\mathrm{S} \cap \mathrm{O}^q(\mathcal{G}))\mathcal{G}_q = (\mathrm{T}^{x^{-1}} \cap \mathrm{O}^q(\mathcal{G}))\mathcal{G}_q \leq \mathcal{G}, \forall \ \mathcal{G}_a \ belong \ to \ \zeta \ , x \in \mathcal{G}, \Rightarrow (\mathrm{T} \cap \mathrm{O}^q(\mathcal{G}))\mathcal{G}_q^{-x} = ((T^{x^{-1}})^x \cap \mathrm{O}^q\mathcal{G}^x)\mathcal{G}_q^{-x}$ = $(T^{x^{-1}} \cap O^q(\mathcal{G})^x) \mathcal{G}_q^x = (T^{x^{-1}} \cap O^q(\mathcal{G})\mathcal{G}_q)^x \le \mathcal{G}, \forall x \in \mathcal{G}, \mathcal{G}_q \in \zeta$. Science Sylow subgroups are conjugate, so $T \cap O^{q}(\mathcal{G})$ becomes S-permutable within \mathcal{G} . From [2, p.17, Lemma 1.2.16] $O^{q}(\mathcal{G}) \leq N_{\mathcal{G}}(T \cap O^{q}(\mathcal{G}))$. Moreover, $T \cap O^q(\mathcal{G}) \trianglelefteq QQ$ is abelian from (5). So, $\mathcal{G} = QO^q(\mathcal{G}) \le N_q(T \cap O^q(\mathcal{G}))$ from (6) thus $T \cap O^q(\mathcal{G}) \trianglelefteq$ G. Hence (7) is satisfied.

(8) $Q \cap O^{q}(\mathcal{G}) \neq 1$. Assume $Q \cap O^{q}(\mathcal{G})=1$. Since $[Q, O^{q}(\mathcal{G})] \leq Q \cap O^{q}(\mathcal{G})=1$, it follows that $O^{q}(\mathcal{G}) \leq C_{3}(Q)$. Moreover, $Q \leq C_{3}(Q)$ from (5) Q is abelian. So, $\mathcal{G}=QO^{q}(\mathcal{G}) \leq C_{3}(Q)$ from (6) thus $Q \leq Z(\mathcal{G})$, a negation to (4). Hence, (8) is clear.

(9) $Q \cap \Phi(\mathcal{G}) \neq 1$. Consider $Q \cap \Phi(\mathcal{G})=1$. By Lemma 2.9, $Q=Y_1xY_2x...Y_n$, where each $Y_k \leq \mathcal{G}$ (minimal), for k=1, 2... n. Since $Q \cap O^q(\mathcal{G})\neq 1$ by (8) also $\Phi(Q)=1$ from (5), so $T \leq Q(\text{maximal})$ s.t $Q = (Q \cap O^q(\mathcal{G}))T \Rightarrow |(Q \cap O^q(\mathcal{G})):(T \cap O^q(\mathcal{G}))| = |Q:T|=q$. So, $T \cap O^q(\mathcal{G}) \leq \mathcal{G}$ by (7). Thus, $(Q \cap O^q(\mathcal{G}))/(T \cap O^q(\mathcal{G}))$ becomes chief factor of \mathcal{G} having order q. Suppose an operator group Q having operator domain $\Omega = Inn(\mathcal{G})$. So, $1 \leq Y_1 \leq Y_1 \leq Q_1 \ldots \leq Y_1 Y_2 \ldots Y_n = Q$ be Ω -composition series of Ω -group Q. As $(Q \cap O^q(\mathcal{G}))/(T \cap O^q(\mathcal{G}))$ be Ω -composition factor of Q, so, $(Q \cap O^q(\mathcal{G}))/(T \cap O^q(\mathcal{G})) \cong Y_n$ (by Jordan-Holder Theorem), for few k $(1 \leq k \leq n)$. Therefore, $|Y_k| = q$, for few $k(1 \leq k \leq n)$, a negation to (4). Hence (9) hold. Suppose $Y \leq \mathcal{G}$ (minimal), $Y \subseteq Q \cap \Phi(\mathcal{G})$, so coming are true:

(10) $F(\mathcal{G}/Y) = F(\mathcal{G})/Y$. Assume $\mathcal{K}/Y = F(\mathcal{G}/Y)$. So $\mathcal{K} \leq \mathcal{G}$ (nilpotent) from [6, p.270, Satz 3.5] thus $\mathcal{K} \leq F(\mathcal{G})$. Hence, (10) is true.

(11) $Y \trianglelefteq G$ (unique minimal), $Y \subseteq Q$. Lemma 2.2(a), (10) implies $F^*(G/N) = F(G/N)E(G/N) = F(G)/Y WY$ and [F(G)/Y, WY] = 1, WY = E(G/Y) denote layer subgroup of G/Y. As [F(G)/Y, WY] = 1, so [F(G), M] = Y. Suppose $\mathcal{K} \trianglelefteq \mathcal{G}$ (minimal), $\mathcal{K} \subseteq Q$ different from Y. Thus $[\mathcal{K},] \le \mathcal{K} \cap Y = 1$ so $W \le C_G(\mathcal{K})$. From (4), $C_G(\mathcal{K}) < \mathcal{G}$ (proper). As $F^*(\mathcal{G}) = F(\mathcal{G}) \le C_G(\mathcal{K})$ thus (3), [3, p.36, Theorem 10.6(b)] implies $C_G(\mathcal{K})$ becomes supersolvable from (2) so W also solvable. As WY solvable perfect group from Lemma 2.2(b), so WY = 1implies $F^*(\mathcal{G}/Y) = F(\mathcal{G})/Y$. From Lemma 2.6, maximal subgroups of $Syl(F^*(\mathcal{G}/Y) = F(\mathcal{G})/Y)$ becomes weakly $\zeta Y/Y - permutable$ within \mathcal{G}/Y . So, \mathcal{G}/Y fulfill assumption of theorem thus \mathcal{G}/Y becomes supersolvable from minimality of \mathcal{G} . As $Y \le \Phi(\mathcal{G})$ implies $\mathcal{G}/\Phi(\mathcal{G})$ becomes supersolvable. It indicates \mathcal{G} also supersolvable science class of supersolvable groups form saturated formation, a negation. Hence (11) is satisfied. (12) Final negation (5) implies, $\mathcal{M} \leq Q(\text{maximal})$ s.t $Q = Y\mathcal{M}$. When $Y \leq \mathcal{M} \cap O^{q}(\mathcal{G})$, then $Y \leq \mathcal{M}$ so $Q = \mathcal{M}$, a negation. Therefore, $Y \not \leq \mathcal{M} \cap O^{q}(\mathcal{G})$. As $\mathcal{M} \cap O^{q}(\mathcal{G}) \leq \mathcal{G}$ by (7) also $Y \neq \mathcal{M} \cap O^{q}(\mathcal{G})$, (11) implies $\mathcal{M} \cap O^{q}(\mathcal{G}) = 1$. Surly, $Q = (Q \cap O^{q}(\mathcal{G}))\mathcal{M}$ science $Y \leq Q \cap O^{q}(\mathcal{G})$ from(8),(11). Hence, $|Q \cap O^{q}(\mathcal{G})| = |Q:\mathcal{M}| = q$, a negation to (4). It finishes the proof.

Proof of Theorem 1.4.

 $1 \Rightarrow 2$ When $\mathcal{G} \in F$, so (b) is correct along H= 1.

2⇒1 Maximal subgroups of $\mathcal{G}_q \cap \mathcal{F}^*(\mathcal{K})$ are weakly conjugate $Z \cap \mathcal{K}$ -*permutable* within $\mathcal{K}, \forall \mathcal{G}_q \cap \mathcal{K} \in Z \cap \mathcal{K}$ (from Lemma2.3(a)). Theorem1.3 indicate \mathcal{K} is supersolvable so $\mathcal{F}^*(\mathcal{K})=\mathcal{F}(\mathcal{K})$. So, $\mathcal{K} \subseteq \mathcal{G}$ (solvable) along $\mathcal{G}/\mathcal{K} \in \mathcal{F}$ and maximal subgroups of Syl($\mathcal{F}(\mathcal{K})$) becomes weakly Conjugate ζ -permutable within \mathcal{G} . Lemma 2.4 implies $\mathcal{G} \in \mathcal{F}$. It finishes the proof.

The coming famous results available in literature are at once outcomes of Theorems 1.3, 1.4.

Corollary 3.1 [8, Theorem 3.1] Suppose $\mathcal{K} \leq \mathcal{G}$ s.t $\mathcal{G}/\mathcal{K} \in \mu$. When maximal subgroups of $\mathcal{G}_q \cap \mathcal{F}^*(\mathcal{K})$ becomes ζ -permutable within \mathcal{G} , for every $\mathcal{G}_q \in \zeta$, so $\mathcal{G} \in \mu$.

Corollary 3.2 [9, Theorem 3.1] Suppose $\mathcal{K} \cong \mathcal{G}$ s.t $\mathcal{G}/\mathcal{K} \in \mu$. When maximal subgroups of Syl($\mathcal{F}^*(\mathcal{K})$) are S-permutable within \mathcal{G} , next $\mathcal{G} \in \mu$.

Corollary 3.3 [8, Main Theorem] Suppose saturated formation \mathcal{F} carrying every types of supersolvable groups μ . So, $\mathcal{G} \in \mathcal{F}$ iff $\mathcal{K} \leq \mathcal{G}$ s.t $\mathcal{G}/\mathcal{K} \in \mathcal{F}$, maximal subgroups of $\mathcal{G}_q \cap \mathcal{F}^*(\mathcal{K})$ becomes ζ -permutable within \mathcal{G} , for each $\mathcal{G}_q \in \zeta$.

Corollary 3.4 [9, Theorem 3.4] For F, μ and G. When $G \trianglelefteq \mathcal{K}$ s.t $G/\mathcal{K} \in F$ and maximal subgroups of the Syl($F^*(\mathcal{K})$) are S-permutable within G, next $G \in F$.

Corollary 3.5 [10, Theorem 3.1] For F, μ and G. When $\mathcal{K} \cong G$ s.t $G/\mathcal{K} \in F$, maximal subgroups of $Syl(F^*(\mathcal{K}))$ becomes c-normal within G, next $G \in F$.

Data Availability

In this article, no data were utilized. **Funding statement** This research is sponsored and funded by NRPU#17309. **Authors' declaration** - Conflicts of Interest: None - We hereby confirm that all the Figures and Tables in the manuscript are ours.

References

- 1. Asaad, M., Heliel, A. A. On permutable subgroups of finite groups. Arch. Math. 80, 113-118 (2003).
- Ballester-Bolinches, A.; Esteban-Romero, R.; Asaad, M.: Products of Finite groups. Expositions in Mathematics, vol. 53. Walter de gruyter, Berlin (2010).
- 3. Doerk, K.; Hawkes, T.: Finite Soluble groups. Expositions in Mathematics- , vol. 4. Walter de gruyter, Berlin (1992).
- 4. Heliel, A. A.; Al-Shomrani, M. M.; Al-gafri, T. M.: On weakly Z-permutable subgroups of finite

groups. J. Algebra Appl.(2015). doi: 10.1142/S0219498815500620.

- 5. Huppert, B.; Blackburn, N.: Finite groups III. Springer, Berlin (1982).
- 6. Huppert, B.: Endliche gruppen I. Springer, Berlin (1979).
- 7. Kegel, O. H. Sylow gruppen und Subnormalteiler endlicher gruppen.Math. Z. 78, 205-221 (1962).
- 8. Li, Y.; Heliel, A. A. On permutable subgroups of finite groups II. Commun. Algebra 33, 3353-3358 (2005).
- 9. Li, Y.; Wang, Y.; Wei, H.: The influence of p-quasinormality of some subgroups of a finite group. Arch. Math. 81, 245-252 (2003).
- 10. Wei, H.; Wang, Y.; Li, Y.: On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Commun. Algebra 31, 4807-4816 (2003).
- 11. Wang, Y.: C-normality of groups and its properties. J. Algebra 180,954-965 (1996).
- 12. A. A. Heliel and T. M. Al-gafri : On Conjugate ζ permutable subgroups finite groups. Journal of Algebra and its application, Vol. 12, No. 8 (2013) 1350060 (14 pages).