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Abstract 

Sign language recognition improves accessibility for the deaf and hard-of-hearing by translating 

hand gestures into machine-interpretable labels. This paper presents a hybrid pipeline for static 

Auslan digit recognition (classes 0–2) that combines convolutional neural networks (CNNs) for 

automated feature extraction with classical classifiers, Support Vector Machine (SVM) and 

Random Forest (RF). A grayscale dataset of 6,000 images (2,000 per class) was pre-processed using 

Canny edge detection to emphasize contour information, then resized for model inputs. Two CNN 

feature-extractors were trained and their flattened feature vectors fed to an RBF-kernel SVM and 

a 100-tree Random Forest. Experimental evaluation shows the CNN + Random Forest hybrid 

attained the highest validation accuracy (99.75%), outperforming the baseline end-to-end CNN 

(≈95%) and the CNN+SVM (99.67%). The trained pipeline was also integrated into a Mediapipe-

based real-time testing setup to demonstrate practical applicability. Results indicate that combining 

deep feature extraction with ensemble/classical classifiers improves robustness and generalization 

for static gesture recognition. Future work will expand class coverage, incorporate dynamic gesture 

modelling, and investigate model compression for embedded deployment. 

Keywords: Sign Language Recognition; Auslan; Convolutional Neural Network; Random Forest; 

Support Vector Machine (SVM); Canny Edge Detection; Media Pipe; Real-Time Recognition. 

Introduction 

Sign language serves as the primary mode of communication for deaf and hard-of-hearing 

communities worldwide. Automated Sign Language Recognition (SLR) systems aim to bridge the 

communication gap between signers and non-signers by translating hand gestures into machine-

interpretable labels. With the rapid advancements in deep learning and computer vision, SLR has 

emerged as an active research area, showing promising progress in both isolated and continuous 

recognition tasks. Over the years, researchers have proposed various approaches to enhance the 

robustness and scalability of SLR. Pu et al. [4] developed an iterative alignment network for 

continuous recognition, while Hu et al. [15] introduced CorrNet, a correlation-based architecture 

for spatio-temporal modeling. Gloss-free translation methods such as Yin et al. [13] and Zhou et 

al. [14] advanced the field by eliminating the need for intermediate gloss annotations. More 

recently, Gong et al. [23] demonstrated that large language models (LLMs) can serve as effective 

sign language translators, highlighting the potential of multimodal reasoning. Despite these 

advancements, static sign recognition—an essential component for real-time interactive systems—

remains a critical challenge. Convolutional Neural Networks (CNNs) have been the dominant 

approach for static gesture classification due to their ability to extract discriminative features. For 
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example, Mureed et al. [1] implemented a CNN-based system for Auslan sign recognition, 

reporting a validation accuracy of 95%. While this demonstrates the viability of CNNs, end-to-end 

models often plateau in performance and may struggle to generalize across variations in hand 

shapes, lighting conditions, or backgrounds. To overcome these limitations, hybrid frameworks 

combining deep feature extraction with classical machine learning classifiers have been explored 

in recent studies. Building on this motivation, our work proposes a CNN + Random Forest (RF) 

hybrid pipeline for static Auslan digit recognition (classes 0–2). The proposed system applies 

Canny edge detection during preprocessing to emphasize contours, followed by CNN-based feature 

extraction. These features are then classified using both Support Vector Machines (SVMs) and RF 

classifiers, with the CNN + RF model achieving a peak validation accuracy of 99.75%, significantly 

outperforming the baseline CNN (~95%) [1]. Furthermore, the pipeline was integrated into a 

Mediapipe-based real-time recognition system, demonstrating its practical applicability in assistive 

technologies. 

The key contributions of this paper are as follows: 

1. We propose a hybrid CNN + classical classifier pipeline for static Auslan digit recognition. 

2. We demonstrate that the hybrid approach achieves state-of-the-art accuracy (99.75%), 

surpassing the CNN baseline [1]. 

3. We validate real-time applicability by deploying the pipeline in a Mediapipe-based 

interactive setup. 

Related Work 

A literature survey of the existing methods is explicated in this section. 

Machine Learning 

Before the rise of deep learning, traditional machine learning methods were widely used for sign 

language recognition. These approaches relied on handcrafted features extracted from images or 

videos, which were then classified using conventional algorithms. While effective for small-scale 

datasets, their performance often degraded on larger vocabularies or more complex gestures. 

Support Vector Machine (SVM): Support Vector Machines (SVMs) have been widely adopted 

due to their strong performance in high-dimensional feature spaces. Early studies demonstrated that 

SVMs, when combined with handcrafted descriptors such as Histograms of Oriented Gradients 

(HOG), achieved competitive accuracy in static gesture recognition tasks. More recently, Kalandar 

and Dworakowski [32] used wearable flex sensors for dynamic sign language recognition and 

reported 99% accuracy with SVMs. Similarly, Alnujaim et al. [35] provided a comprehensive 

review of Arabic Sign Language systems, highlighting SVM as one of the most reliable classifiers 

with accuracies reaching up to 99% in fingerspelling and around 96% in dynamic gesture 

recognition. These results confirm that SVM remains a competitive option for sign language 

recognition tasks, especially in resource-constrained setups. 

K-Nearest Neighbor (K-NN): K-NN classifiers are popular for their simplicity and ease of 

implementation. Early studies applied K-NN on geometric hand features, obtaining reasonable 

accuracy on small datasets. With the advancement of sensing technologies, newer works have 

tested K-NN on larger and more complex inputs. For instance, Kalandar and 

Dworakowski [32] demonstrated that K-NN achieved around 98% accuracy for wearable-sensor-

based sign language recognition. In the context of Arabic Sign Language, Alnujaim et al. [35] also 

reported promising results with K-NN, although its performance was generally lower than that of 

SVM. Despite these successes, K-NN is less favoured in modern SLR pipelines due to scalability 

issues and its reliance on distance metrics, which make it sensitive to intra-class variations. 

Random Forest (RF): Random Forests (RFs) are ensemble methods that combine multiple 

decision trees, improving robustness against noise and overfitting. RF has been successfully used 

in various sign language recognition studies. Kalandar and Dworakowski [32] reported 99% 
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accuracy for dynamic ASL word recognition using RF, highlighting its effectiveness compared to 

K-NN. Nagesh et al. [33] also compared RF with SVM and K-NN for gesture recognition using 

sensor-based inputs (flex, accelerometer, and gyroscope data), finding that RF delivered the best 

performance with 98.5% accuracy. Furthermore, Ronchetti et al. [34] applied RF as a baseline 

method for Argentinian Sign Language handshape recognition, showing competitive performance 

against novel classifiers such as ProbSom. These studies demonstrate that RF remains a strong 

candidate for both vision-based and sensor-based SLR, particularly when combined with deep 

learning feature extractors. In our work, we leverage RFs alongside CNN-extracted features, 

outperforming CNN-only baselines [1]. 

Deep Learning: The advent of deep learning transformed sign language recognition by eliminating 

the need for handcrafted features and enabling end-to-end learning from raw data. Deep 

architectures capture complex spatial and temporal dependencies, making them suitable for both 

static and continuous sign recognition. 

Long Short-Term Memory (LSTM): LSTM networks have been widely applied to model 

temporal dynamics in continuous sign language recognition. Recent studies, such as Aloysius et al. 

[18], proposed ConSignformer, an adaptation of the Conformer architecture for continuous 

recognition, combining attention mechanisms with recurrent layers. Similarly, Zuo et al. [26] 

investigated online continuous SLR pipelines integrating RNNs and transformers for real-time 

performance. 

Convolutional Neural Network (CNN): CNNs remain the most commonly used architecture for 

static sign recognition due to their powerful feature extraction capabilities. For example, Mureed 

et al. [1] implemented a CNN-based Auslan recognition model, achieving 95% validation accuracy. 

While effective, these results highlight the limitations of end-to-end CNN models. Other studies, 

such as Sandoval-Castaneda et al. [12], applied self-supervised video transformers to enhance 

isolated sign recognition by combining CNN features with transformer layers, reinforcing CNNs 

as a foundation for hybrid and multimodal approaches. 

Gated Recurrent Unit (GRU): GRUs, a simplified alternative to LSTMs, have also been explored 

in sequence modeling. Their reduced parameterization enables computational efficiency while 

capturing temporal patterns. Continuous SLR studies often employ GRUs alongside CNNs or 

attention modules to balance performance and efficiency [18]. Although less common than LSTMs, 

GRUs are gaining interest in lightweight, real-time recognition models. 

Proposed Methods 

This study proposes a hybrid framework for static Auslan digit recognition, designed to leverage 

the powerful feature extraction capabilities of Convolutional Neural Networks (CNNs) with the 

classification strengths of traditional machine learning models. We hypothesize that while CNNs 

excel at learning discriminative features, decoupling the feature extraction and classification phases 

can enhance robustness and generalization performance. The proposed system employs a CNN as 

a dedicated feature extractor, the output of which is fed into either a Support Vector Machine (SVM) 

or a Random Forest (RF) classifier. The following subs detail the architectural pipeline and 

methodology common to both hybrid models. The dataset used for training and evaluation is 

described in Section 4.1. The block diagram of proposed method is displayed in figure 1. 
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Figure 1: Structure of CNN + RF  

CNN + SVM Hybrid Model 

In this experiment, a hybrid CNN–SVM pipeline was implemented to evaluate the effectiveness of 

combining deep feature extraction with a classical machine learning classifier. The workflow 

consisted of the following steps: 

Preprocessing: All input images were converted to grayscale and resized to 64×64 pixels to 

optimize computational efficiency for the subsequent SVM training. Pixel intensities were 

normalized to the range [0, 1] and images were reshaped to include a single channel dimension. 

Canny edge detection was applied to emphasize contour information and suppress background 

noise. 

CNN Feature Extraction: A custom CNN architecture was constructed from multiple 

convolutional blocks, each comprising a Conv2D layer, Batch Normalization, MaxPooling, and 

Dropout. The final convolutional output was flattened and fed into a dense layer of 256 neurons, 

producing a 256-dimensional feature vector for each input image. To establish a strong baseline, 

this CNN was first trained end-to-end with a softmax output layer, achieving a validation accuracy 

of approximately 95%, thereby replicating the results of [1]. For the hybrid pipeline, the softmax 

layer was removed, and the network was truncated after the 256-unit dense layer to function solely 

as a feature extractor. 

SVM Classifier: The 256-dimensional feature embeddings served as input to a Support Vector 

Machine (SVM) with a Radial Basis Function (RBF) kernel. The decision function for the SVM 

is: 

𝒇(𝒙) = 𝒔𝒊𝒈𝒏(∑ 𝜶𝒊𝒚𝒊𝑲(𝒙𝒊, 𝒙) + 𝒃)

𝑁

𝑖=1

 

where x is the test feature vector, 𝑥𝑖 are the support vectors, 𝑦𝑖∈ {−1, +1} are class labels, 𝛼𝑖are 

the learned weights, and 𝑏 is the bias. The kernel function K(𝑥𝑖,x)defines similarity between 

samples. In this study, a Radial Basis Function (RBF) kernel was employed: 

 

𝑲(𝒙𝒊, 𝒙) = 𝒆𝒙𝒑(−𝜸 ∥ 𝒙𝒊 − 𝒙 ∥𝟐) 

  

where the parameter γ controls the influence of each support vector, and the regularization 

parameter C balances the trade-off between margin maximization and misclassification. 
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Hyperparameters C and γ were optimized using GridSearchCV with 5-fold Stratified Cross-

Validation. The best SVM model was retrained on the full training set and evaluated against the 

test set. 

Performance Evaluation: Classification performance was measured using accuracy, 

precision, recall, and F1-score, allowing direct comparison with both the Random Forest 

classifier (proposed method) and the baseline CNN [1]. 

Hybrid CNN + Random Forest (RF) Model: 

In the Random Forest experiment, the Convolutional Neural Network (CNN) was not trained end-

to-end for classification. Instead, the CNN was employed solely as a feature extractor, while 

classification was delegated to a Random Forest (RF) ensemble. 

Preprocessing: Each image from the Auslan static digit dataset (classes 0–2) was converted to 

grayscale and resized to 150×150 pixels to provide higher-resolution input for the feature extractor. 

Canny edge detection was applied to emphasize hand contours and eliminate background noise. 

Finally, pixel intensities were normalized to the range [0,1]. 

CNN Feature Extractor: The CNN feature extractor was intentionally kept lightweight to reduce 

overfitting while retaining discriminative power. It comprised two convolutional layers with 32 and 

64 filters, respectively, each followed by max pooling operations. The final feature maps were 

flattened into a one-dimensional vector representation. These embeddings captured local texture 

and contour patterns essential for static gesture classification. 

Random Forest (RF) Classifier: The extracted feature vectors served as input to a Random Forest 

classifier with 100 estimators. Random Forest is an ensemble learning method that aggregates 

multiple decision trees to improve classification robustness and reduce variance. Each decision tree 

is trained on a random subset of the training data (bootstrapping) and uses a random subset of 

features at each split, thereby promoting model diversity. 

The final class prediction 𝑦̂ is obtained by majority voting across all trees: 

 

𝑦̂ = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥)} 
where: 

 

 ℎ𝑡(x) = prediction of 𝑡𝑡ℎ(x) decision tree, 

 T = total number of trees, 

 𝑦̂ = final predicted class (majority vote). 

The probability of class c can also be estimated as: 

 

𝑃(𝑦 = 𝑐|𝑥) =  
1

𝑇
 ∑ 𝐼

𝑇

𝑡=1

(ℎ𝑡(𝑥) = 𝑐) 

 

where I(.) is the indicator function (1 if true, 0 otherwise). 

Systems Implementation and Evaluation 

This section details the experimental setup used to validate the proposed hybrid models, including 

the dataset description, baseline for comparison, evaluation metrics, and implementation specifics. 

Datasets 

The dataset employed in this study is the AUSLAN Sign Language (Fingerspelling) Dataset, 

which is publicly available on Kaggle. It contains more than 71,000 images of Auslan fingerspelling 

gestures, covering both alphabetic letters and digits. The images were captured under varied but 

controlled conditions to account for natural variations in hand orientation and background, while 
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ensuring clarity. A Gaussian blur filter was applied in the original dataset to enhance feature 

extraction. For this work, a subset of the dataset was selected, consisting of three-digit classes (0, 

1, and 2). Each class included 2,000 images, resulting in a total of 6,000 grayscale images. 

Preprocessing steps included: 

 Conversion to grayscale, 

 Resizing to the required input dimensions, 

 Normalization of pixel values to the range [0,1] 

 In the Random Forest experiment, Canny edge detection was additionally applied to 

highlight hand contours. 

This subset was used for both training and evaluation of the proposed hybrid frameworks. 

 

  

 

Figure 2: Image of 0, 1, 2 Digit 

 

Baseline Methods 

The baseline for comparison in this study was derived from the original Auslan CNN framework, 

where an end-to-end Convolutional Neural Network (CNN) was trained for classification without 

any hybridization. In this approach, the CNN directly mapped preprocessed images to class labels 

through its convolutional, pooling, and fully connected layers, concluding with a softmax output 

layer. This baseline model achieved a validation accuracy of approximately 95% [1], as reported 

in prior work, and served as a reference point for assessing the effectiveness of hybrid approaches. 

The primary objective of introducing Support Vector Machine (SVM) and Random Forest (RF) 

classifiers was to determine whether CNN-based deep feature extraction, when coupled with 

classical ensemble or margin-based classifiers, could surpass the performance of a purely end-to-

end CNN. 
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Evaluation Metrics 

To comprehensively evaluate model performance, four metrics were considered: accuracy, 

precision, recall, and F-score. These metrics allow for assessment not only of overall classification 

success but also of the model’s ability to correctly identify individual classes while minimising 

false predictions. Since the dataset used in this study is balanced across three gesture classes (0, 1, 

2), both macro- and micro-averages were considered to ensure fair performance reporting. 

Accuracy: Accuracy measures the proportion of correctly classified samples out of the total 

number of samples. It provides a general performance indicator, although in highly imbalanced 

datasets it can be misleading. In this study, because each class has the same number of samples, 

accuracy remains a reliable overall metric. 

 

 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
  

= ∑ 𝑻𝑷𝒌
𝒌
𝒌=𝟏

𝑵
 

Precision: Precision quantifies how many of the predicted positive instances for a given class are 

actually correct. High precision corresponds to fewer false positives, meaning the model is more 

confident and selective in its predictions. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒌 =  
𝑻𝑷𝒌

𝑻𝑷𝒌 + 𝑭𝑷𝒌
 

Recall: Recall (or sensitivity) measures the proportion of actual positive samples that were 

correctly identified by the model. High recall reduces the number of missed cases (false negatives). 

𝑹𝒆𝒄𝒂𝒍𝒍𝒌 =  
𝑻𝑷𝒌

𝑻𝑷𝒌 +  𝑭𝑵𝒌
 

Macro-averaged 

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐 =  
𝟏

𝑲
 ∑ 𝑹𝒆𝒄𝒂𝒍𝒍𝒌

𝑲

𝑲=𝟏

 

Micro-averaged recall  

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 =  
∑ 𝑻𝑷𝒌

𝒌
𝒌=𝟏

∑ (𝑻𝑷𝒌 +  𝑭𝑵𝒌)𝒌
𝒌=𝟏

 

 

F Score: The F-score is the harmonic mean of precision and recall, providing a balanced measure 

between the two. It is especially useful when both false positives and false negatives need to be 

minimised. 

 

𝑭𝟏𝒌 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒌 × 𝑹𝒆𝒄𝒂𝒍𝒍𝒌

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒌 + 𝑹𝒆𝒄𝒂𝒍𝒍𝒌
 

 

Macro F1 averages across classes: 

 

𝑭𝟏𝒎𝒂𝒄𝒓𝒐 =  
𝟏

𝑲
∑ 𝑭𝟏𝒌

𝑲

𝑲=𝟏

 

 

Micro F1 aggregates counts before computing the harmonic mean: 

𝑭𝟏𝒎𝒊𝒄𝒓𝒐 =  
𝟐 ∑ 𝑻𝑷𝒌

𝒌
𝒌=𝟏

𝟐 ∑ 𝑻𝑷𝒌 + ∑ (𝑭𝑷𝒌 + 𝑭𝑵𝒌)𝒌
𝒌=𝟏

𝒌
𝒌=𝟏
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Experiment Details 

The experiments were carried out in a GPU-enabled Google Colab environment (Tesla T4) using 

Python 3.9. Data preprocessing (grayscale conversion, resizing, normalization, and Canny edge 

detection) was performed using OpenCV, while model development employed TensorFlow/Keras 

for CNN construction and training. Classical classifiers, including SVM and Random Forest, along 

with hyperparameter tuning, were implemented using Scikit-learn. Dataset partitioning, pre-

processing steps, and model configurations followed the methodologies described in earlier 

sections. All models were evaluated on the held-out test set using standard classification metrics to 

ensure consistent and fair comparison. 

Results and Discussion 

The performance results of our proposed model are presented in this section. The results were 

compared with the previously introduced methods, which were tested on the 

same datasets. 

Quantitative Results 

The performance of the baseline CNN, CNN–SVM, and CNN–Random Forest models was 

evaluated in terms of training and validation accuracy. The performance of all models is 

quantitatively summarized in Table 1. 

 

Figure 3: Performance Comparison of Models 

 
 

Table 1: Comparison of three approaches 

Model Image 

Size 

Batch Size Training 

Accuracy 

Validation 

Accuracy 

Baseline CNN 150x150 36 92.00% 95.00% 

CNN + SVM (RBF) 64×64 32 99.23% 99.67% 

CNN + Random Forest 150×150 – (tree-based) 100.00% 99.75% 

 

Observations 

 The baseline CNN achieved a validation accuracy of 95%, which establishes a strong 

benchmark but shows limitations in handling subtle gesture variations. 

88

90

92

94

96

98

100

102

Baseline CNN CNN + SVM (RBF) CNN + Random Forest

Performance Comparison of Models

Training Accuracy Validation Accuracy
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 The CNN + SVM hybrid improved performance substantially, achieving 99.67% validation 

accuracy. This indicates that SVM effectively separates high-dimensional CNN features 

using the RBF kernel. However, a slight gap between training (99.23%) and validation 

(99.67%) accuracy suggests mild overfitting tendencies. 

 The CNN + Random Forest model performed the best, achieving 100% training accuracy 

and 99.75% validation accuracy, indicating robust generalization. RF benefitted from CNN-

extracted feature embeddings and leveraged ensemble averaging to minimize 

misclassifications. 

 The nearly perfect accuracy of CNN+RF highlights its suitability for static gesture 

recognition, though further testing on larger and more diverse datasets would be necessary 

to confirm scalability. 

 

Qualitative Analysis 

Confusion matrices and classification reports were generated for both CNN+SVM and CNN+RF 

models. Both models demonstrated strong class-wise recognition with minimal false positives and 

false negatives. The Random Forest in particular showed highly stable predictions across all gesture 

classes. Additionally, visual inspection of test samples confirmed that Canny edge preprocessing 

effectively enhanced the distinction between digit gestures by emphasizing contour features. This 

was especially beneficial for SVM and RF, both of which rely on clear feature boundaries. 

Figure 4: Confusion matrix of the CNN+SVM model showing classification results across 

digit classes. 

 
 

Figure 5: Confusion matrix of the CNN + Random Forest model showing classification results 

across digit classes. 
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Figure 6: Image of correctly classified digit gestures (0, 1, and 2) from the test set using the 

proposed hybrid models. 

CNN + SVM 

   

CNN + Random Forest 

   

Conclusions and Future Work 

This study proposed a hybrid framework for Auslan sign language digit recognition by combining 

CNN-based feature extraction with classical classifiers (SVM and Random Forest). The results 

demonstrated that hybridization significantly outperformed the baseline CNN, with CNN+SVM 
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achieving 99.67% accuracy and CNN+RF achieving 99.75%, compared to the baseline CNN’s 

95%. Random Forest in particular exhibited highly stable predictions across all gesture classes. 

These findings confirm that coupling deep feature representations with ensemble learning enhances 

robustness and generalization for static gesture recognition tasks. The current experiments were 

limited to three-digit classes (0–2) from the Auslan dataset, future extensions will focus on: 

 Expanding the framework to cover the full Auslan alphabet and number set. 

 Incorporating dynamic gesture sequences using temporal models (e.g., LSTM, GRU, or 

Transformers). 

 Evaluating performance on larger and more diverse datasets to test scalability. 

 Investigating model compression and lightweight architectures for real-time deployment on 

embedded systems. 
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